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and 

It is argued that dynamical chaos in quantum mechanics arises solely from the 
collapse rule applied in measurements. As such it is quite distinct from classical 
(deterministic) chaos, which arises from the dynamical law itself. It is shown, 
however, that if the particles of a quantum system are regarded as "real," i.e., 
if their positions are made part of the state description, one obtains a formula- 
tion of quantum theory, Bohmian mechanics, in which "quantum chaos" also 
arises solely from the dynamical law. Moreover, this occurs in a manner far 
simpler than in the classical case. 

KEY WORDS: Quantum chaos; quantum randomness; sensitive dependence 
on initial conditions; Bohmian mechanics; Bernoulli system; hidden variables. 

1. I N T R O D U C T I O N  

A characteristic feature of chaotic classical dynamical systems is the ran- 
domness or unpredictability of their behavior. Randomness and unpredic- 
tability are also, of course, characteristic features of quantum phenomena. 
However, they are not to be found in the quantum dynamics, the 
Schr6dinger evolution, itself. This evolution is very regular, in fact 
preserving distances in Hilbert space. Thus, it can have no sensitive 
dependence on initial conditions, the hallmark of classical chaos: A (small) 
variation 6~o in the initial wave function 
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leads to the variation 6Or, 

~t--, ~,, + ~ , ,  

at later times whose magnitude does not change with time, 

116~,11 = const 

After all, the evolution is unitary! [Here IbOq/IL 2 =S I~(q) l  2 dq.] 
In orthodox quantum theory randomness arises only in connection 

with measurements. And, however measurements may manage to produce 
randomness, the point we wish now to emphasize is that the Schr6dinger 
dynamical system itself does not (much) contribute to it. [-We do not dis- 
cuss here the randomness which emerges as a quantum system approaches, 
in the classical limit, a chaotic classical one; we discuss here only random 
behavior which is already exhibited in microscopic systems. In particular, 
we do not address issues such as the manifestations of classical chaos in 
the semiclassical regime, for example in the asymptotic distribution of the 
eigenvalues of the Hamiltonian. Of course, quantum randomness on the 
microscopic level is readily elevated to the macroscopic (classical) level 
when sensitive dependence on initial conditions is present on the latter 
level. ] 

2. T W O  E X A M P L E S  

We shall consider here two elementary examples: 

| 

) 

Schematic wavefronts for simple scattering from a fixed central target. Fig. 1. 

1. Simple scattering (see Fig. 1). 
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We are t.rained to see the scattering process in quantum theory as one 
in which, for example, a particle with an initially more or less definite 
momentum emerges after scattering with a random momentum, and this is 
of course what we find if we take into account the effect of measurement 
upon the final, scattering state. However, the Schr6dinger evolution by 
itself leads to no randomness; a wave packet coming in evolves into a 
definite spread-out wave coming out. And a small change in the incoming 
state leads only to a small change in the final state. 

Let us remark that it would not help here if we were to include the 
measurement device as part of our Schr6dinger system. The spreading and 
lack of randomness will remain, elevated, however, to the macroscopic 
level. 

2. Simple periodic motion. 
Consider a particle in one dimension in a (symmetric) double-well 

potential V (Fig. 2), for example, V(q) - -  )~(q4 _ q2).  The ground s t a t e  IPsy m 

(Fig. 3) is symmetric under reflection through the origin, and has energy 
Eo. The first excited state Oasym (Fig. 4) is antisymmetric (odd) and has 
energy E1 (a little larger than E0). Assume that the central barrier is so 
large (2 ~> 1) that the combinations 

= + 

and 

(~/L = ( ~/sym - -  ~P asym ) / N ~  

are (approximately) supported on the right and left, respectively. 

V 

q 

Fig. 2. 
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l~sym 

q 

Fig.  3. 

Focus on the evolution beginning in the initial state ~0 = ~/R" We have 
that, up to a time-dependent phase, the time-evolved state is given by 

-- ia~t ~, = (~sym + e ~a~ym)/,f5 

which is periodic, with period T =  2zt/co, where he)= AE= E l -  Eo. 
Now from a dynamical systems perspective a single periodic orbit can 

lead to no randomness, regardless of what property we choose to observe. 
But suppose, for this quantum system in the state described, we measure 

cr = sign(q) ,,~ I~OR ) <~RI - I~L > (~LI 

~asym 

q 

Fig.  4. 
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i.e., we "see" whether the state is OR or ~L, and suppose we do this at times 

t = z, 2v, 3z, 4~ .... 

where ~= T/4 is a quarter-period. Note that if the system were left 
undisturbed, i.e., for the pure Schr6dinger evolution, we would have that 

0,  = 0R, L, 0L,  0~,L, 0R .... 

at these times, where 0R, L = (0sym--i0asym)/Xf ~ and 0~,L = 

(0sym + i0asyrn)/'~//~ assign equal probability to o-= +1 and o-= -1 .  Thus, 
when we measure a at time ~ we will find that a = +1 with probability 1/2, 
with the system projected into the state OR, and a = -1 ,  with probability 
1/2, with the system projected into the state 0L. Whichever outcome we 
obtain at time z, we may repeat the analysis to obtain the same statistics 
for the outcome at time 2~. Iterating, we find that the outcome at any time 
nr is a Bernoulli (1/2, 1/2) random variable, independent of all previous 
outcomes. We thus find the most random of processes, a Bernoulli process, 
arising from (what without "measurement" is) a periodic motion. 

Of course, and this is the point, for orthodox quantum theory this 
randomness arises somehow from the effect of measurement--not  from 
the behavior of the dynamical system, the periodic motion, describing the 
unmeasured system. In fact, we would go further and say that, at best, in 
orthodox quantum mechanics the randomness is put in by hand! We 
would thus like to suggest--particularly in view of the fact that it is 
fashionable nowadays to look for the quantum manifestations of classical 
chaos-- that  a comparison of classical and quantum chaos would be easier 
if the quantum dynamics, like the classical, were itself responsible for ran- 
domness, and it did not have to be put in by hand, in a rather mysterious 
way at that. But we have argued that, however nice it would be, this is 
simply not the case. 

3. B O H M I A N  M E C H A N I C S  

The situation is quite different in the formulation of quantum theory 
proposed in a tentative, incomplete form by de Broglie, (5) and in a more 
definitive form by Bohm. (3) Bohm's theory, which we shall call Bohmian 
mechanics, can be regarded as based on the following contention: The wave 
function 0 for a system of one or more particles should not be regarded as 
the complete description of this system, since its most important feature, 
the positions of the particles themselves, should be included in this descrip- 
tion. 
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For Bohmian mechanics the complete state for a system of N particles 
is given by 

(Q, t)) 

where 

Q = (Q1 ..... QN) ~ ~[~3N 

with Q1,.-., QN the positions of the particles, and 

q/= O(q) = ~b(ql ,..., qN) 

is the wave function of the system. Note that we use Q for the actual 
configuration and q for the generic configuration space variable. 

As for the time evolution, since (Q, ~) is indeed the "state," the present 
specification, say (Qo, ~ho), must determine the state (Q,, ~t) at later 
times; thus the evolution is defined by first-order differential equations: 
Schr6dinger's equation 

ih ~ = HO , 

for ~, and an evolution equation for Q of the form 

dQ,= vO,(Qt ) 
dt 

where 

v ~' = (v~ ..... V~N) (1) 

is a vector field on configuration space ~3N. Thus the role of the wave 
function ~ here is to generate the motion of the particles, through the 
vector field on configuration space, 

to which it is associated. 
Moreover, the detailed form of v ~ is determined by requiring 

space-time symmetry--Galilean covariance. This leads rather directly, as 
the simplest possibility, to 

v~ = h Im V__~ 
m 



Quantum Chaos and Bohmian Mechanics 265 

for a one-particle system (note that the V is suggested by rotation 
invariance, the ~9 in the denominator by homogeneity, the Im by time- 
reversal invariance, and the constant in front is precisely what is required 
for covariance under Galitean boosts) and to 

v~ =--h Im Vk~ (2) 
mk 

for many particles. 
We have arrived at Bohmian mechanics: For a nonrelativistic system of 

N particles (for simplicity ignoring spin) the state is given by (Q, ~) and 
the evolution by 

dQ, = v~,,(Qt) 
dt 

h2 
ih - 5Gm %0,+ 

k = l  

with v ~' given by (1) and (2). Bohmian mechanics is a fully deterministic 
theory of particles in motion, but a motion of a highly nonclassical, non- 
Newtonian sort. Nonetheless, in the limit h/m--* O, the Bohm motion Q, 
becomes more and more like the classical. Moreover, although in orthodox 
quantum theory the notion of quantum observables as self-adjoint 
operators plays a fundamental role, while this notion does not appear at all 
in the formulation of Bohmian mechanics, it can nonetheless be shown that 
Bohmian mechanics not only accounts for quantum phenomena--this was 
essentially done by Bohm (3'4) in 1952 and 1953--but also embodies the 
quantum formalism itself--self-adjoint operators, randomness given by 
p = I~'l 2 and all--as the very expression of its empirical import. (6'7) 

In order to get some feeling for how Bohmian mechanics is related to 
orthodox quantum theory, let us consider briefly the two-slit experiment. 
How does the electron know, when it passes through one of the slits, 
whether or not the other slit is open so that it can adjust its motion accord- 
ingly? The answer is rather trivial: The motion of the electron is governed 
by the wave function. When both slits are open, the wave function develops 
an interference profile, and it should not be terribly astonishing for this 
pattern to be reflected in the motion of the electron which it generates. 

But for Bohmian mechanics what is special about the familiar distribu- 
tion p =  ]~b12? Consider the ensemble evolution p ~ p ,  arising from the 
Bohm motion, p, is the ensemble to which the Bohm evolution carries the 
ensemble p in t units of time. If p = pr is a functional of ~ (e.g., pO = ]OJ~), 
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we may also consider the transformation pO--*pO' arising from 
Schr6dinger's equation. If these evolutions are compatible, 

(p4,) =pq,, 

we say that p~ is equivariant. In other words, the equivariance of p~ means 
that under the time evolution it retains its form as a functional of ~b. 

Now, pq'=[~l 2 is equivariant. This follows immediately from the 
observation that the quantum probability current f f  = I q/I 2 /)q,, SO that the 
continuity equation 

-Pt + div(pv ~) = 0 

is satisfied by the density p , =  lOtl 2. As a consequence: 

If p(q, to)= 14'(q, to)h z at some time to, then p(q, t )=  [O(q, t)] 2 for 
all t. 

What about the physical significance of p = I~bl2? It turns out that 
when a system has wave function O, its configuration is random, with dis- 
tribution I~12. Now what this really means, and why this is so, we cannot 
go into here (for this, see ref. 6). Let us just say that the assertion can be 
regarded as roughly analogous to the Gibbs postulate of statistical 
mechanics: Compare quantum equilibrium 

p=lO[  2 

whose complete justification (6) in fact turns out to be remarkably easy, with 
thermodynamic equilibrium 

p~e -~  H 

whose complete justification is remarkably difficult (and as yet non- 
existent). 

As far as the general problem of the existence of chaos in quantum 
theory is concerned, note that there is nothing in Bohmian mechanics 
which would preclude sensitive dependence on initial conditions, of Q, on 
Qo and ~o, and hence positive Lyapunov exponents. Observe, in this 
regard, that the evolution equation for Q, i.e., v ~, will typically be highly 
nonlinear--both as a functional of ~,, and, more importantly, as a function 
of Q. 
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4. E X A M P L E S  REVISITED 

Let us now reconsider the two examples from a Bohmian perspective: 

1. For the scattering example we find that the randomness out 
emerges rather trivially from randomness in the initial configuration. The 
behavior here (see Fig. 5) is more or less like a typical classical scattering-- 
the sort of event which may generate separation of trajectories and positive 
Lyapunov exponents for classical dynamics. 

2. Concerning motion in the double-welt potential, let us for 
simplicity consider the idealization (2 ~ 1 ) in which tp R (~bL) is completely 
supported by { q > 0 }  ({q<0}) .  We are now employing [the obvious 
(d = 1) version of] Bohmian mechanics to study the motion of a single par- 
ticle in 1 dimension. Since trajectories in 2 dimensions (1 space and 1 time) 
cannot cross, it follows that, with initial state tpg, initial positions Q in the 
"left half" (0, b) ["right half" (b, oe)] of the support (0, oo) of ~R will 
evolve to a position Q(r) on the left (right) of the origin at time z. In fact, 
by equivariance, we have that the boundary b of these two intervals is 
determined by 

b 

fo IOR(q)l 2 dq = �89 

When an (ideal) measurement of a is performed at time z, the result 
is sign(Q(~)). Thus, the result of the measurement of a at time r is 

J 
Fig. 5. Two Bohmian trajectories for simple scattering. 
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governed by which of the two intervals happens to contain the initial 
position Q. Moreover, the position Q(r) is not changed by this measure- 
ment. However, the "effective wave function" is changed: It follows from a 
detailed analysis of measurement in Bohmian mechanics that after this 
measurement, the future behavior of the system will be governed by either 
0L or 0R as appropriate; i.e., at time v the wave function of the system will 
effectively collapse to 0I~ (OR) if Q(r) < 0 [Q(r) > 0]--see refs. 3 and 7 for 
details. We wish to emphasize, however, that our point here is not to 
explain how collapse comes about, but to point out that the randomness 
associated with the collapse (or with the result of the measurement) derives 
here solely from randomness in the initial position, while for quantum 
orthodoxy there is absolutely nothing from which this randomness can be 
said to derive! 

Continuing in this way, we find that the result of each successive 
measurement (of ~r at times n~) corresponds to successive divisions into 
"left" and "right" subintervals of already "existing" intervals. The possible 
outcomes for the first n measurements correspond to 2" intervals of initial 
positions. In fact, we may consider an (unconventional) binary expansion 

Q =.xlx2x3... (3) 

of the initial configuration, based on these successive binary subdivisions. 
Here xi is 1 or 0 according to whether the result ~r i of the ith measurement 
is + 1 or - 1 ,  ~ri= ( - 1 )  x'+~. Thus the randomness in the sequence of out- 
comes here--and the infinite amount of information to which this random- 
ness corresponds--arises in the usual chaos theory, symbolic dynamics, 
sort of way--from the infinite amount of information contained in each 
real number, i.e., in the detailed initial configuration. And while the 
analysis here is far simpler than is usually required to prove the existence 
of "chaos" for various standard models, and indeed is rather trivial, we 
remind the reader that the model considered here, arising as it does from 
nonrelativistic quantum theory, is a good deal more "physical" than the 
systems normally subjected to rigorous mathematical analysis in dynamical 
systems theory. 

Note that x~, x2, x~ .... form a sequence of independent, identically 
distributed random variables on the space (0, oo) equipped with the 
probability measure given by 10R] 2. It thus follows from the law of large 
numbers that for almost every initial position Q, with respect to (10R[ 2 and 
hence with respect to) Lebesgue measure on (0, oo), the results of our 
sequence of measurements lead to empirical distributions characteristic of 
our Bernoulli process. In this sense the randomness which emerges from 
the infinite sequence of measurements is intrinsic to the dynamical system 
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-b t~ b Q(2~) 
f I 

-b b Q(,~) 

Fig. 6. The action of 4'. The motion Q(t), �9 <<. t <~ 2z, is governed by v ~, with ~, = OL (resp., 
4'R) for Q(z)<0 [resp., Q(z)>0]. 

itself, and does not much depend upon what might be considered an 
arbitrary choice of initial probability distribution. 

A final observation about this example: Let ~b be the map from N\{0} 
to itself which carries Q(r) to Q(2r) (see Fig. 6). Then it is easy to see (in 
the approximation which we are considering) that for all n > 0 

Q ( ( n  + 1)r) = q~(Q(nv)) 

Moreover, by equivariance, the map ~b preserves the probability distribu- 
tion # given by (J0RI2+ 10tl2)/2 = IOR, t.r2 = IO~,el 2. It follows easily from 
the preceding discussion that the (noninvertible) dynamical system defined 
by ~b and ~ is isomorphic to a one-sided (1/2, 1/2) Bernoulli shift--with the 
isomorphism defined by a coding similar to the one mentioned above, i.e., 
by the coding which associates Q(~) with the sequence xl ,  x2, x3 .... arising 
from (3) above. [Thus it is isomorphic to x--* 2x (rood 1).] 

5. H I D D E N  V A R I A B L E S  

We urge the reader to reflect upon the contrast between what we have 
described here---the ease with which randomness emerges in Bohmian 
mechanics--and the heuristic argument, as described by Wigner, (8) that 
convinced von Neumann of the impossibility of a deterministic version of 
quantum theory employing "hidden variables." Referring to an alternating 
sequence of spin measurements, of ~x followed by cr z followed by ex..., 
Wigner (yon Neumann) says 

...all measurements succeeding the first one give the two possible results with a 
probability 1/2. If these results are, fundamentally, all determined by the initial 

822/68/1-2-18 
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values of the hidden parameters, the outcome of each measurement should give 
some information on the initial values of these parameters. Eventually, it would 
seem, the values of the "hidden parameters" which determine the outcomes of 
the first N measurements would be in such a narrow range that they would 
determine, if N is large enough, the outcomes of all later measurements. Yet this 
is in contradiction to the quantum-mechanical prediction. 

W e  c o n c l u d e  wi th  a q u o t a t i o n  f r o m  J o h n  S tua r t  Bell. 

Although ~p is a real field it does not show up immediately in the result of a 
single "measurement," but only in the statistics of many such results. It is the 
de Broglie-Bohm variable Q that shows up immediately each time. That Q 
rather than ~ is historically called a "hidden" variable is a piece of historical 
silliness.~l 
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